Do Now: Find a possible function for $f(x)$.

Intermediate Value Theorem - For polynomial function f, if $a < b$ and if $f(a)$ and $f(b)$ are of opposite signs, then there exists at least one real zero of f between a and b.

Together as a class . . .
Ex. Use the IVT to show and explain that each polynomial function has a zero in the given interval.

1. \(f(x) = 2x^3 - x^2 + 2x - 3 \)
 \([0,2]\)

2. \(g(x) = -x^3 + 3x^2 + 10x \)
 \([-3,-1]\)
Together as a class . . .

The opposite of the Intermediate Value Theorem IS NOT TRUE.

NOT TRUE: For polynomial function f, if $a < b$ and if $f(a)$ and $f(b)$ are of **THE SAME** signs, then there exists **NO** real zeros of f between a and b.

Here's why: $f(x) = x^2 - 5x + 4$ \([0,6]\)
- $f(0) = 4$
- $f(6) = 10$

Begin: Wkst #119